2 research outputs found

    Parallel-Sparse Symmetrical/Unsymmetrical Finite Element Domain Decomposition Solver with Multi-Point Constraints for Structural/Acoustic Analysis

    Get PDF
    Details of parallel-sparse Domain Decomposition (DD) with multi-point constraints (MPC) formulation are explained. Major computational components of the DD formulation are identified. Critical roles of parallel (direct) sparse and iterative solvers with MPC are discussed within the framework of DD formulation. Both symmetrical and unsymmetrical system of simultaneous linear equations (SLE) can be handled by the developed DD formulation. For symmetrical SLE, option for imposing MPC equations is also provided. Large-scale (up to 25 million unknowns involving complex numbers) structural and acoustic Finite Element (FE) analysis are used to evaluate the parallel computational performance of the proposed DD implementation using different parallel computer platforms. Numerical examples show that the authors\u27 MPI/FORTRAN code is significantly faster than the commercial parallel sparse solver. Furthermore, the developed software can also conveniently and efficiently solve large SLE with MPCs, a feature not available in almost all commercial parallel sparse solvers

    On the Development of an Efficient Parallel Hybrid Solver with Application to Acoustically Treated Aero-Engine Nacelles

    Get PDF
    A finite element solution to the convected Helmholtz equation in a nonuniform flow is used to model the noise field within 3-D acoustically treated aero-engine nacelles. Options to select linear or cubic Hermite polynomial basis functions and isoparametric elements are included. However, the key feature of the method is a domain decomposition procedure that is based upon the inter-mixing of an iterative and a direct solve strategy for solving the discrete finite element equations. This procedure is optimized to take full advantage of sparsity and exploit the increased memory and parallel processing capability of modern computer architectures. Example computations are presented for the Langley Flow Impedance Test facility and a rectangular mapping of a full scale, generic aero-engine nacelle. The accuracy and parallel performance of this new solver are tested on both model problems using a supercomputer that contains hundreds of central processing units. Results show that the method gives extremely accurate attenuation predictions, achieves super-linear speedup over hundreds of CPUs, and solves upward of 25 million complex equations in a quarter of an hour
    corecore